Все о плазме. Плазма (агрегатное состояние)

Плазма Плазменная лампа , иллюстрирующая некоторые из наиболее сложных плазменных явлений, включая филаментацию. Свечение плазмы обусловлено переходом электронов из высокоэнергетического состояния в состояние с низкой энергией после рекомбинации с ионами . Этот процесс приводит к излучению со спектром , соответствующим возбуждаемому газу.

Слово «ионизированный» означает, что от электронных оболочек значительной части атомов или молекул отделён по крайней мере один электрон . Слово «квазинейтральный» означает, что, несмотря на наличие свободных зарядов (электронов и ионов), суммарный электрический заряд плазмы приблизительно равен нулю. Присутствие свободных электрических зарядов делает плазму проводящей средой, что обуславливает её заметно большее (по сравнению с другими агрегатными состояниями вещества) взаимодействие с магнитным и электрическим полями . Четвёртое состояние вещества было открыто У. Круксом в 1879 году и названо «плазмой» И. Ленгмюром в 1928 году , возможно из-за ассоциации с плазмой крови . Ленгмюр писал:

Исключая пространство около электродов, где обнаруживается небольшое количество электронов, ионизированный газ содержит ионы и электроны практически в одинаковых количествах, в результате чего суммарный заряд системы очень мал. Мы используем термин «плазма», чтобы описать эту в целом электрически нейтральную область, состоящую из ионов и электронов.

Формы плазмы

По сегодняшним представлениям, фазовым состоянием большей части вещества (по массе ок. 99,9 %) во Вселенной является плазма. Все звёзды состоят из плазмы, и даже пространство между ними заполнено плазмой, хотя и очень разреженной (см. межзвездное пространство). К примеру, планета Юпитер сосредоточила в себе практически все вещество Солнечной системы , находящееся в «неплазменном» состоянии (жидком , твердом и газообразном). При этом масса Юпитера составляет всего лишь около 0,1 % массы Солнечной системы, а объём - и того меньше: всего 10 −15 %. При этом мельчайшие частицы пыли, заполняющие космическое пространство и несущие на себе определенный электрический заряд, в совокупности могут быть рассмотрены как плазма, состоящая из сверхтяжелых заряженных ионов (см. пылевая плазма).

Свойства и параметры плазмы

Определение плазмы

Плазма - частично или полностью ионизированный газ, в котором плотности положительных и отрицательных зарядов практически одинаковы. Не всякую систему заряженных частиц можно назвать плазмой. Плазма обладает следующими свойствами:

  • Достаточная плотность : заряженные частицы должны находиться достаточно близко друг к другу, чтобы каждая из них взаимодействовала с целой системой близкорасположенных заряженных частиц. Условие считается выполненным, если число заряженных частиц в сфере влияния (сфера радиусом Дебая) достаточно для возникновения коллективных эффектов (подобные проявления - типичное свойство плазмы). Математически это условие можно выразить так:
, где - концентрация заряженных частиц.
  • Приоритет внутренних взаимодействий : радиус дебаевского экранирования должен быть мал по сравнению с характерным размером плазмы. Этот критерий означает, что взаимодействия, происходящие внутри плазмы более значительны по сравнению с эффектами на её поверхности, которыми можно пренебречь. Если это условие соблюдено, плазму можно считать квазинейтральной. Математически оно выглядит так:

Классификация

Плазма обычно разделяется на идеальную и неидеальную , низкотемпературную и высокотемпературную , равновесную и неравновесную , при этом довольно часто холодная плазма бывает неравновесной, а горячая равновесной.

Температура

При чтении научно-популярной литературы читатель зачастую видит значения температуры плазмы порядка десятков, сотен тысяч или даже миллионов °С или К. Для описания плазмы в физике удобно измерять температуру не в °С, а в единицах измерения характерной энергии движения частиц, например, в электрон-вольтах (эВ). Для перевода температуры в эВ можно воспользоваться следующим соотношением: 1 эВ = 11600 K (Кельвин). Таким образом становится понятно, что температура в «десятки тысяч °С» достаточно легко достижима.

В неравновесной плазме электронная температура существенно превышает температуру ионов. Это происходит из-за различия в массах иона и электрона, которое затрудняет процесс обмена энергией. Такая ситуация встречается в газовых разрядах, когда ионы имеют температуру около сотен, а электроны около десятков тысяч K.

В равновесной плазме обе температуры равны. Поскольку для осуществления процесса ионизации необходимы температуры, сравнимые с потенциалом ионизации, равновесная плазма обычно является горячей (с температурой больше нескольких тысяч K).

Понятие высокотемпературная плазма употребляется обычно для плазмы термоядерного синтеза, который требует температур в миллионы K.

Степень ионизации

Для того, чтобы газ перешел в состояние плазмы, его необходимо ионизировать . Степень ионизации пропорциональна числу атомов, отдавших или поглотивших электроны, и больше всего зависит от температуры . Даже слабо ионизированный газ, в котором менее 1 % частиц находятся в ионизированном состоянии, может проявлять некоторые типичные свойства плазмы (взаимодействие с внешним электромагнитным полем и высокая электропроводность). Степень ионизации α определяется как α = n i /(n i + n a), где n i - концентрация ионов, а n a - концентрация нейтральных атомов. Концентрация свободных электронов в незаряженной плазме n e определяется очевидным соотношением: n e =<Z > n i , где <Z > - среднее значение заряда ионов плазмы.

Для низкотемпературной плазмы характерна малая степень ионизации (до 1 %). Так как такие плазмы довольно часто употребляются в технологических процессах, их иногда называют технологичными плазмами. Чаще всего их создают при помощи электрических полей, ускоряющих электроны, которые в свою очередь ионизируют атомы. Электрические поля вводятся в газ посредством индуктивной или емкостной связи (см. индуктивно-связанная плазма). Типичные применения низкотемпературной плазмы включают плазменную модификацию свойств поверхности (алмазные пленки, нитридирование металлов, изменение смачиваемости), плазменное травление поверхностей (полупроводниковая промышленность), очистку газов и жидкостей (озонирование воды и сжигание частичек сажи в дизельных двигателях).

Горячая плазма почти всегда полностью ионизирована (степень ионизации ~100 %). Обычно именно она понимается под «четвертым агрегатным состоянием вещества ». Примером может служить Солнце .

Плотность

Помимо температуры, которая имеет фундаментальную важность для самого существования плазмы, вторым наиболее важным свойством плазмы является плотность. Словосочетание плотность плазмы обычно обозначает плотность электронов , то есть число свободных электронов в единице объёма (строго говоря, здесь, плотностью называют концентрацию - не массу единицы объёма, а число частиц в единице объёма). В квазинейтральной плазме плотность ионов связана с ней посредством среднего зарядового числа ионов : . Следующей важной величиной является плотность нейтральных атомов . В горячей плазме мала, но может тем не менее быть важной для физики процессов в плазме. При рассмотрении процессов в плотной, неидеальной плазме характерным параметром плотности становится , который определяется как отношение среднего межчастичного расстояния к радиусу Бора .

Квазинейтральность

Так как плазма является очень хорошим проводником, электрические свойства имеют важное значение. Потенциалом плазмы или потенциалом пространства называют среднее значение электрического потенциала в данной точке пространства. В случае если в плазму внесено какое-либо тело, его потенциал в общем случае будет меньше потенциала плазмы вследствие возникновения дебаевского слоя. Такой потенциал называют плавающим потенциалом . По причине хорошей электрической проводимости плазма стремится экранировать все электрические поля. Это приводит к явлению квазинейтральности - плотность отрицательных зарядов с хорошей точностью равна плотности положительных зарядов (). В силу хорошей электрической проводимости плазмы разделение положительных и отрицательных зарядов невозможно на расстояниях больших дебаевской длины и временах больших периода плазменных колебаний.

Примером неквазинейтральной плазмы является пучок электронов. Однако плотность не-нейтральных плазм должна быть очень мала, иначе они быстро распадутся за счёт кулоновского отталкивания.

Отличия от газообразного состояния

Плазму часто называют четвертым состоянием вещества . Она отличается от трёх менее энергетичных агрегатных состояний материи, хотя и похожа на газовую фазу тем, что не имеет определённой формы или объёма. До сих пор идёт обсуждение того, является ли плазма отдельным агрегатным состоянием, или же просто горячим газом. Большинство физиков считает, что плазма является чем-то большим, чем газ по причине следующих различий:

Свойство Газ Плазма
Электрическая проводимость Крайне мала
К примеру, воздух является превосходным изолятором до тех пор, пока не переходит в плазменное состояние под действием внешнего электрического поля напряженностью в 30 киловольт на сантиметр .
Очень высока
  1. Несмотря на то, что при протекании тока возникает хотя и малое, но тем не менее конечное падение потенциала, во многих случаях электрическое поле в плазме можно считать равным нулю. Градиенты плотности, связанные с наличием электрического поля, могут быть выражены через распределение Больцмана.
  2. Возможность проводить токи делает плазму сильно подверженной влиянию магнитного поля, что приводит к возникновению таких явлений как филаментирование, появление слоев и струй.
  3. Типичным является наличие коллективных эффектов, так как электрические и магнитные силы являются дальнодействующими и гораздо сильнее, чем гравитационные.
Число сортов частиц Один
Газы состоят из подобных друг другу частиц, которые находятся в тепловом движении, а также движутся под действием гравитации , а друг с другом взаимодействуют только на сравнительно небольших расстояниях.
Два, или три, или более
Электроны, ионы и нейтральные частицы различаются знаком эл. заряда и могут вести себя независимо друг от друга - иметь разные скорости и даже температуры, что служит причиной появления новых явлений, например волн и неустойчивостей.
Распределение по скоростям Максвелловское
Столкновения частиц друг с другом приводит к максвелловскому распределению скоростей , согласно которому очень малая часть молекул газа имеют относительно большие скорости движения.
Может быть немаксвелловское

Электрические поля имеют другое влияние на скорости частиц чем столкновения, которые всегда ведут к максвеллизации распределения по скоростям. Зависимость сечения кулоновских столкновений от скорости может усиливать это различие, приводя к таким эффектам, как двухтемпературные распределения и убегающие электроны.

Тип взаимодействий Бинарные
Как правило двухчастичные столкновения, трёхчастичные крайне редки.
Коллективные
Каждая частица взаимодействует сразу со многими. Эти коллективные взаимодействия имеют гораздо большее влияние чем двухчастичные.

Сложные плазменные явления

Хотя основные уравнения, описывающие состояния плазмы, относительно просты, в некоторых ситуациях они не могут адекватно отражать поведение реальной плазмы: возникновение таких эффектов - типичное свойство сложных систем , если использовать для их описания простые модели . Наиболее сильное различие между реальным состоянием плазмы и её математическим описанием наблюдается в так называемых пограничных зонах, где плазма переходит из одного физического состояния в другое (например, из состояния с низкой степенью ионизации в высокоионизационное). Здесь плазма не может быть описана с использованием простых гладких математических функций или с применением вероятностного подхода. Такие эффекты как спонтанное изменение формы плазмы являются следствием сложности взаимодействия заряженных частиц , из которых состоит плазма. Подобные явления интересны тем, что проявляются резко и не являются устойчивыми. Многие из них были изначально изучены в лабораториях, а затем были обнаружены во Вселенной.

Математическое описание

Плазму можно описывать на различных уровнях детализации. Обычно плазма описывается отдельно от электромагнитных полей. Совместное описание проводящей жидкости и электромагнитных полей даётся в теории магнитогидродинамических явлений или МГД теории.

Флюидная (жидкостная) модель

Во флюидной модели электроны описываются в терминах плотности, температуры и средней скорости. В основе модели лежат: уравнение баланса для плотности, уравнение сохранения импульса, уравнение баланса энергии электронов. В двухжидкостной модели таким же образом рассматриваются ионы.

Кинетическое описание

Иногда жидкостная модель оказывается недостаточной для описания плазмы. Более подробное описание даёт кинетическая модель, в которой плазма описывается в терминах функции распределения электронов по координатам и импульсам. В основе модели лежит уравнение Больцмана . Уравнение Больцмана неприменимо для описания плазмы заряженных частиц с кулоновским взаимодействием вследствие дальнодействующего характера кулоновских сил. Поэтому для описания плазмы с кулоновским взаимодействием используется уравнение Власова с самосогласованным электромагнитным полем, созданным заряженными частицами плазмы. Кинетическое описание необходимо применять в случае отсутствия термодинамического равновесия либо в случае присутствия сильных неоднородностей плазмы.

Particle-In-Cell (частица в ячейке)

Модели Particle-In-Cell являются более подробными, чем кинетические. Они включают в себя кинетическую информацию путём слежения за траекториями большого числа отдельных частиц. Плотности электрического заряда и тока определяются путём суммирования числа частиц в ячейках, которые малы по сравнению с рассматриваемой задачей, но, тем не менее, содержат большое число частиц. Электрическое и магнитное поля находятся из плотностей зарядов и токов на границах ячеек.

Базовые характеристики плазмы

Все величины даны в Гауссовых СГС единицах за исключением температуры, которая дана в eV и массы ионов, которая дана в единицах массы протона ; Z - зарядовое число; k - постоянная Больцмана; К - длина волны; γ - адиабатический индекс; ln Λ - Кулоновский логарифм.

Частоты

  • Ларморова частота электрона , угловая частота кругового движения электрона в плоскости перпендикулярной магнитному полю:
  • Ларморова частота иона , угловая частота кругового движения иона в плоскости перпендикулярной магнитному полю:
  • плазменная частота (частота плазменных колебаний), частота с которой электроны колеблются около положения равновесия, будучи смещенными относительно ионов:
  • ионная плазменная частота:
  • частота столкновений электронов
  • частота столкновений ионов

Длины

  • Де-Бройлева длина волны электрона , длина волны электрона в квантовой механике:
  • минимальное расстояние сближения в классическом случае , минимальное расстояние на которое могут сблизиться две заряженных частицы при лобовом столкновении и начальной скорости, соответствующей температуре частиц, в пренебрежении квантово-механическими эффектами:
  • гиромагнитный радиус электрона , радиус кругового движения электрона в плоскости перпендикулярной магнитному полю:
  • гиромагнитный радиус иона , радиус кругового движения иона в плоскости перпендикулярной магнитному полю:
  • размер скин-слоя плазмы , расстояние на которое электромагнитные волны могут проникать в плазму:
  • Радиус Дебая (длина Дебая) , расстояние на котором электрические поля экранируются за счёт перераспределения электронов:

Скорости

  • тепловая скорость электрона , формула для оценки скорости электронов при распределении Максвелла . Средняя скорость, наиболее вероятная скорость и среднеквадратичная скорость отличаются от этого выражения лишь множителями порядка единицы:
  • тепловая скорость иона , формула для оценки скорости ионов при распределении Максвелла :
  • скорость ионного звука , скорость продольных ионно-звуковых волн:
  • Альфвеновская скорость , скорость Альфвеновских волн :

Безразмерные величины

  • квадратный корень из отношения масс электрона и протона :
  • Число частиц в сфере Дебая:
  • Отношение Альфвеновской скорости к скорости света
  • отношение плазменной и ларморовской частот для электрона
  • отношение плазменной и ларморовской частот для иона
  • отношение тепловой и магнитной энергий
  • отношение магнитной энергии к энергии покоя ионов

Прочее

  • Бомовский коэффициент диффузии
  • Поперечное сопротивление Спитцера

Помимо трех основных состояний вещества: жидкого, твердого и газообразного, существует еще и четвертое состояние вещества. Это состояние называется плазма. Плазма - частично или полностью ионизированный газ. Плазму можно получить путем дальнейшего нагревания газа. При достаточно больших температурах начинается ионизация газа. И он переходит в состояние плазмы.

Степень ионизации плазмы может быть различной, в зависимости от того сколько атомов и молекул ионизировано. Помимо нагревания газа, плазму можно получить и другими путями. Например, с помощью излучений или бомбардировкой газа быстрыми заряженными частицами. В таких случаях говорят о низкотемпературной плазме.

Свойства плазмы

Плазму выделили в отдельное четвертое состояние вещества, так как она обладает специфическими свойствами. Плазма в целом является электрически нейтральной системой. Любое нарушение нейтральности устраняется путем скопления частиц одного знака.

Это происходит потому, что заряженные частицы плазмы обладают очень высокой подвижностью и легко поддаются воздействию электрических и магнитных полей. Под действием электрических полей заряженные частицы перемещаются к области, где нарушена нейтральность, до тех пор, пока электрическое поле не станет равным нулю, то есть восстановится нейтральность.

Между молекулами плазмы действуют силы кулоновского притяжения. При этом каждая частица взаимодействует сразу с многими другими окружающими её частицами. Вследствие чего, частицы плазмы помимо хаотичного теплового движения, могут участвовать в различных упорядоченных движениях. Поэтому в плазме легко возбудить различные колебания и волны.
По мере увеличения степени ионизации плазмы, её проводимость увеличивается. При достаточно высоких температурах, плазму можно считать сверхпроводником.

Плазма в природе

Огромная часть вещества Вселенной находится именно в состоянии плазмы. Например, Солнце и другие звезды вследствие высокой температуры состоят, в основном, из полностью ионизированной плазмы. Межзвездная среда тоже состоит из плазмы. Здесь ионизация атомов вызывается излучением самих звезд.

Межзвездная плазма является примером низкотемпературной плазмы. Наша планета тоже окружена плазмой. Например, ионосфера. В ионосфере ионизация газа вызывается излучением солнца. Выше ионосферы, расположены радиационные пояса Земли, которые тоже состоят из плазмы.

В данном случае плазма также является низкотемпературной. Большей частью свойств плазмы обладают также свободные электроны в металлах. Но их ограничением является тот факт, что они не могут свободно перемещаться по всему объему тела.

Плазма крови – это вязкая однородная жидкость светло-желтого цвета. Она составляет около 55-60% от общего объема крови. В виде взвеси в ней находятся клетки крови. Обычно плазма прозрачна, но после приема жирной пищи может быть слегка мутной. Состоит из воды и растворенных в ней минеральных и органических элементов.

Состав плазмы и функции ее элементов

Большую часть плазмы составляет вода, ее количество – примерно 92 % от всего объема. Кроме воды, она включает следующие вещества:

  • белки;
  • глюкозу;
  • аминокислоты;
  • жир и жироподобные вещества;
  • гормоны;
  • ферменты;
  • минералы (ионы хлора, натрия).

Около 8% от объема составляют белки, которые являются основной частью плазмы. В ней содержится несколько видов белков, основными из них являются:

  • альбумины – 4-5%;
  • глобулины – около 3%;
  • фибриноген (относится к глобулинам) – около 0,4%.

Альбумин

Альбумин – основной белок плазмы. Отличается малой молекулярной массой. Содержание в плазме – более 50% от всех белков. Образуются альбумины в печени.

Функции белка:

  • выполняют транспортную функцию – переносят жирные кислоты, гормоны, ионы, билирубин, лекарственные препараты;
  • принимают участие в обмене веществ;
  • регулируют онкотическое давление;
  • участвуют в синтезе белков;
  • резервируют аминокислоты;
  • доставляют лекарственные препараты.

Изменение уровня этого белка в плазме является дополнительным диагностическим признаком. По концентрации альбумина определяют состояние печени, так как для многих хронических заболеваний этого органа характерно его снижение.

Глобулины

Остальные белки плазмы относятся к глобулинам, которые являются крупномолекулярными. Вырабатываются они в печени и в органах иммунной системы. Основные виды:

  • альфа-глобулины,
  • бета-глобулины,
  • гамма-глобулины.

Альфа-глобулины связывают билирубин и тироксин, активизируют производство белков, транспортируют гормоны, липиды, витамины, микроэлементы.

Бета-глобулины связывают холестерол, железо, витамины, транспортируют стероидные гормоны, фосфолипиды, стерины, катионы цинка, железа.

Гамма-глобулины связывают гистамин и участвуют в иммунологических реакциях, поэтому их называют антителами, или иммуноглобулинами. Существует пять классов иммуноглобулинов: IgG, IgM, IgA, IgD, IgE. Вырабатываются в селезенке, печени, лимфоузлах, костном мозге. Они отличаются друг от друга биологическими свойствами, структурой. Имеют разные способности по связыванию антигенов, активированию иммунных белков, имеют разную авидность (скорость связывания с антигеном и прочность) и способность проходить через плаценту. Примерно 80% всех иммуноглобулинов оставляют IgG, которые обладают высокой авидностью и являются единственными из всех, способными проникать через плаценту. Первыми у плода синтезируются IgM. Они же появляются первыми в сыворотке крови после большинства прививок. Обладают высокой авидностью.

Фибриноген является растворимым белком, который образуется в печени. Под воздействием тромбина он превращается в нерастворимый фибрин, благодаря которому формируется сгусток крови в месте повреждения сосуда.

Другие белки

Кроме вышеперечисленных, в плазме содержатся и другие белки:

  • комплемент (иммунные белки);
  • трансферрин;
  • тироксинсвязывающий глобулин;
  • протромбин;
  • С-реактивный белок;
  • гаптоглобин.

Небелковые компоненты

Кроме этого плазма крови включает небелковые вещества:

  • органические азотсодержащие: аминокислотный азот, азот мочевины, низкомолекулярные пептиды, креатин, креатинин, индикан. Билирубин;
  • органические безазотистые: углеводы, липиды, глюкоза, лактат, холестерин, кетоны, пировиноградная кислота, минералы;
  • неорганические: катионы натрия, кальция, магния, калия, анионы хлора, йода.

Ионы, находящиеся в плазме, регулируют баланс pH, поддерживают в норме состояние клеток.

Функции белков

У белков есть несколько предназначений:

  • гомеостаз;
  • обеспечение стабильности иммунной системы;
  • поддержание агрегатного состояния крови;
  • перенос питательных веществ;
  • участие в процессе свертывания крови.

Функции плазмы

Плазма крови выполняет много функций, среди которых:

  • транспортировка кровяных клеток, питательных веществ, продуктов обмена веществ;
  • связывание жидких сред, находящихся вне кровеносной системы;
  • осуществление контакта с тканями организма через внесосудистые жидкости, тем самым осуществляя гемостаз.


Донорская плазма спасает много человеческих жизней

Применение донорской плазмы

Для переливания в наше время чаще нужна не цельная кровь, а ее компоненты и плазма. Поэтому в пунктах переливания нередко сдают кровь на плазму. Получают ее из цельной крови центрифугированием, то есть отделяют жидкую часть от форменных элементов с помощью аппарата, после чего клетки крови возвращают донору. Процедура продолжается около 40 минут. Отличие от сдачи цельной крови заключается в том, что кровопотеря значительно меньше, и сдать плазму вновь можно уже через две недели, но не более 12 раз в течение года.

Из плазмы получают сыворотку крови, которую используют в лечебных целях. Она отличается от плазмы тем, что в ней нет фибриногена, при этом содержатся все антитела, которые могут противостоять возбудителям болезней. Для ее получения помещают на час в термостат стерильную кровь. Затем отслаивают образовавшийся сгусток от стенки пробирки и держат в холодильнике сутки. После этого с помощью пастеровской пипетки отстоявшуюся сыворотку сливают в стерильную емкость.

Заключение

Плазма крови – это ее жидкая составляющая, имеющая очень сложный состав. Плазма выполняет в организме важные функции. Кроме того, донорская плазма используется для переливания и приготовления лечебной сыворотки, которую используют для профилактики, лечения инфекций, а также в диагностических целях для идентификации полученных во время анализа микроорганизмов. Она считается более эффективной, чем вакцины. Иммуноглобулины, содержащиеся в сыворотке, сразу же нейтрализуют вредные микроорганизмы и продукты их жизнедеятельности, быстрее формируется пассивный иммунитет.

Плазмы равен нулю. Присутствие свободных электрических зарядов делает плазму проводящей средой, что обуславливает ее значительно большую (по сравнению с другими агрегатными состояниями вещества) взаимодействие с магнитным и электрическим полями . "Четвертый состояние вещества" открыл Уильям Крукс в , а название "плазма" предложил Ирвинг Ленгмюр в .

Как и вещество в любом другом агрегатном состоянии плазма является внешне нейтральной, поскольку является смесью положительных и отрицательных ионов в таком количестве и концентрации, что их заряды компенсируют друг друга. Плазма имеет свойства похожи как на газообразное состояние вещества (частицы движутся свободно и расстояние между частицами значительно больше размер частиц), так и на жидкий (большая вязкость) и твердый (электроны движутся свободно от ядер атомов).


1. Формы плазмы

По сегодняшним представлениям, фазовым состоянием большей части вещества (по массе около 99,9%) в Вселенной является плазма. Все звезды состоят из плазмы, и даже пространство между ними заполнено плазмой, хотя и очень разреженной (см. межзвездное пространство). Например, планета Юпитер сосредоточила в себе практически все вещество Солнечной системы , находящейся в "неплазмовому" состоянии (жидком , твердом и газообразном). При этом масса Юпитера составляет всего около 0,1% массы Солнечной системы, а объем еще меньше: всего 10 -15%. При этом мелкие частицы пыли, которые заполняют космическое пространство и несут на себе определенный электрический заряд, в совокупности могут быть рассмотрены как плазма, состоящая из сверхтяжелых ионов (см. пылевая плазма).


2. Свойства и параметры плазмы

2.1. Определение плазмы

Плазма - частично или полностью ионизированный газ, в котором плотности положительных и отрицательных зарядов практически одинаковы. Не всякую систему заряженных частиц можно назвать плазмой. Плазма имеет следующие свойства:

, Где - Концентрация заряженных частиц.

2.2. Классификация

Плазма обычно делится при этом довольно часто холодная плазма бывает неравновесной, а горячая равновесной.

2.3. Температура

При чтении научно-популярной литературы читатель часто видит значение температуры плазмы порядка десятков, сотен тысяч или даже миллионов С или К. Для описания плазмы в физике удобно измерять температуру не в С, а в единицах измерения, характерная для энергии движения частиц, например, в электрон-вольтах (эВ). Для перевода температуры в эВ можно воспользоваться следующим соотношением: 1 эВ = 11600 K (Кельвинов). Таким образом становится понятно, что температура в "десятки тысяч С" достаточно легко достижима.

В неравновесной плазме электронная температура существенно превышает температуру ионов. Это происходит из-за различия в массах иона и электрона, которое затрудняет процесс обмена энергией. Такая ситуация встречается в газовых разрядах, когда ионы имеют температуру около сотен, а электроны около десятков тысяч K.

В равновесной плазме обе температуры равны. Поскольку для осуществления процесса ионизации необходимы температуры, сравнимые с потенциалом ионизации, равновесная плазма обычно является горячей (с температурой больше нескольких тысяч K).

Понятие высокотемпературная плазма употребляется обычно для плазмы термоядерного синтеза, который требует температур в миллионы K.


2.4. Степень ионизации

Для того, чтобы газ перешел в состояние плазмы, его необходимо ионизировать . Степень ионизации пропорциональна числу атомов, которые отдали или поглотили электроны, и больше зависит от температуры . Даже слабо ионизированный газ, в котором менее 1% долей находятся в ионизированном состоянии, может проявлять некоторые типичные свойства плазмы (взаимодействие с внешним электромагнитным полем и высокая электропроводность). Степень ионизации α определяется как α = n i / (n i + n a), где n i - концентрация ионов, а n a - концентрация нейтральных атомов. Концентрация свободных электронов в незаряженный плазме n e определяется очевидным соотношением n e = n i, где - среднее значение заряда ионов плазмы.

Для низкотемпературной плазмы характерна малая степень ионизации (до 1%). Так как плазмы довольно часто употребляются в технологических процессах, их иногда называют технологическими плазмами. Чаще всего их создают при помощи электрических полей, которые ускоряют электроны, которые в свою очередь ионизируют атомы. Электрические поля вводятся в газ посредством индуктивной или емкостной связи (см. индуктивно-связанная плазма). Типичные применения низкотемпературной плазмы включают плазменную модификацию свойств поверхности (алмазные пленки, нитридування металлов, изменение смачиваемости), плазменное травление поверхностей (полупроводниковая промышленность), очистки газов и жидкостей (озонирование воды и сжигание частиц сажи в дизельных двигателях).

Горячая плазма почти всегда полностью ионизированная (степень ионизации ~ 100%). Обычно именно она подразумевается под "четвертым агрегатным состоянием вещества" . Примером может служить Солнце .


2.5. Плотность

Кроме температуры, которая имеет фундаментальную важность для самого существования плазмы, вторым наиболее важным свойством плазмы является плотность. Словосочетание плотность плазмы обычно обозначает плотность электронов, т.е. число свободных электронов в единице объема (строго говоря, здесь, плотностью называют концентрацию - не массу единицы объема, а число частиц в единице объема). В квазинейтральных плазме плотность ионов связана с ней с помощью среднего зарядового числа ионов : . Следующей важной величиной является плотность нейтральных атомов . В горячей плазме величина мала, но может тем не менее быть важной для физики процессов в плазме. При рассмотрении процессов в густой, неидеальной плазме характерным параметром плотности становится , Который определяется как отношение среднего расстояния между частицами в боровского радиуса.


2.6. Квазинейтральнисть

Поскольку плазма является очень хорошим проводником , электрические свойства имеют важное значение. Потенциалом плазмы или потенциалом пространства называют среднее значение электрического потенциала в данной точке пространства. В случае если в плазму внесено какое-либо тело, его потенциал в общем случае будет меньше потенциал плазмы вследствие возникновения дебаевской слоя. Такой потенциал называют плавающим потенциалом. Из-за хорошей электрической проводимостью плазма стремится экранировать все электрические поля. Это приводит к явлению квазинейтральности - плотность отрицательных зарядов с хорошей точностью равна плотности положительных зарядов (). В связи с хорошей электрической проводимостью плазмы разделение положительных и отрицательных зарядов невозможно на расстояниях больших по дебаивську длину и времени большего период плазменных колебаний.

Примером неквазинейтральнои плазмы является пучок электронов. Однако плотность не-нейтральных плазм должна быть очень мала, иначе они быстро распадутся за счет кулоновского отталкивания.


3. Физические свойства

Характерной особенностью плазмы, в отличие от других агрегатных состояний, является экранирование электростатического взаимодействия. В газе, твердом теле или жидкости поляризация атомов и молекул приводит к уменьшению взаимодействия между зарядами на величину, которая определяется диэлектрической постоянной. В плазме взаимодействие не просто уменьшается, она очень быстро, экспоненциально, затухает с увеличением расстояния между зарядами. Это экранирование предопределения перестройкой плотности зарядов противоположного знака вокруг любого заряда. Благодаря экранированию электроны и ионы в плазме движутся как в усредненном поле, и их можно трактовать как свободные частицы .

Благодаря экранированию внешнее электрическое поле не проникает в плазму на расстоянии, существенно больше, чем длина экранирования . Однако, в плазму может проникать магнитное поле . Плазма, в которой магнитное поле достаточно сильное, чтобы влиять на движение заряженных частиц называется намагниченной. Критерием намагниченности плазмы является отсутствие столкновения между частицами за один оборот в магнитном поле. Часто возникают случаи, когда электроны уже намагниченные, а ионы еще нет. Намагниченная плазма анизотропная - ее свойства зависят от направления относительно магнитного поля.


4. Базовые характеристики плазмы

Все величины приведены в гауссовой СГС одницях за исключением температуры, которая приведена в eV и массы ионов, которая приведена в единицах массы протона ; Z - зарядовое число; k - постоянная Больцмана К - длина волны; γ - адиабатический индекс; ln Λ - кулоновский логарифм.

4.1. Частоты

  • Ларморова частота иона, угловая частота кругового движения иона в плоскости, перпендикулярной к магнитному полю:
  • ионная плазменная частота:
  • частота столкновений электронов
  • частота столкновений ионов

4.2. Длины

  • Де-Бройлева длина волны электрона, длина волны электрона в квантовой механици:
  • минимальное расстояние сближения в классическом случае, минимальное расстояние на которое могут сблизиться две заряженные частицы при лобовом столкновении и начальной скорости, соответствующей температуре частиц, пренебрегая квантово-механические эффекты
  • гиромагнитный радиус электрону, радиус кругового движения электрона в плоскости, перпендикулярной к магнитному полю:
  • гиромагнитный радиус иона, радиус кругового движения иона в плоскости, перпендикулярной к магнитному полю:
  • размер скин-слоя плазмы, расстояние на которое электромагнитные волны могут проникать в плазму:

4.3. Скорости

  • Скорость ионного звука, скорость продольных ионно-звуковых волн:

4.4. Безразмерные величины

  • Число частиц в сфере Дебая:
  • Отношение Альфвенивськои скорости к скорости света
  • отношение плазменной и ларморивськои частот для электрона
  • отношение плазменной и ларморивськои частот для иона
  • отношение тепловой и магнитной энергий
  • отношение магнитной энергии к энергии покоя ионов

5. Отличие от газа

Основным отличием плазмы от газа является то, что существенной частью плазмы, наряду с атомами , ионами и электронами , является электромагнитное поле . Четко определенного фазового перехода между газом и плазмой не существует. Вещество переходит в состояние плазмы из газа постепенно с повышением степени ионизации.

Присутствие зарядов существенно меняет характер взаимодействия между частицами. Атомы газа взаимодействуют между собой только в случае столкновений, когда расстояния между ними малы. Кулоновское взаимодействие зарядов действует на больших расстояниях, поэтому движение заряженных частиц в плазме коллективный - изменение положения одной частицы вызывает смещение других частиц, которые в свою очередь приводят к дальнейшему смещению еще дальнейших частиц. Эти смещения сопровождаются распространением в плазме электромагнитных волн , вызванных локальным изменением плотности заряда. Для плазмы характерны так называемые плазменные колебания - согласованное распространение в пространстве волны плотности заряда продольной электромагнитной волны . В связи с тем, что плазма состоит минимум из двух типов заряженных частиц: электронов и ионов , существуют различные моды плазменных колебаний - электронные плазменные колебания и ионные колебания, так называемый ионный звук .

На коллективные колебания в плазме существенно влияет внешняя магнитное поле , изменяя их характер, и приводя к существованию значительного числа различных типов волн. В отличие от газа плазма обладает высокой электропроводность .

Свойство Газ Плазма
Электрическая проводимость Крайне мала
Например, воздух является прекрасным изолятором до тех пор, пока не переходит в состояние пламени под действием внешнего электрического поля напряженностью в 30 киловольт на сантиметр .
Очень высокая
Количество сортов частиц Один
Газы состоят из подобных друг другу частиц, которые движутся под действием гравитации , а друг с другом взаимодействуют лишь на сравнительно небольших расстояниях.
Два или три, или больше
Электроны, ионы и нейтральные частицы различаются знаком електирчного заряда и могут вести себя независимо друг от друга - иметь разные скорости и даже температуры, что служит причиной появления новых явлений, например волн и неустойчивостей.
Распределение по скоростям Максвелловской
Столкновение частиц друг с другом приводит к максвелловской распределения скоростей , согласно которому очень малая часть молекул газа имеют относительно большую скорость движения.
Немаксвеливський

Электрические поля имеют другое влияние на скорости частиц, чем столкновения, которые всегда ведут к максвелизации распределения по скоростям. Зависимость сечения кулоновских столкновений от скорости может усиливать это различие, приводя к таким эффектам, как двохтемпературний распределение и убегая электроны.

Тип взаимодействий Бинарные
Как правило двухчастичные столкновения, трьохчасткови столкновения крайне редки.
Коллективные
Каждая частица взаимодействует сразу со многими. Эти коллективные взаимодействия имеют гораздо большее влияние, чем двудольные.

5.1. Минимальные размеры

Срок плазма может применяться только к макроскопической совокупности частиц в которой действуют статистические закономерности взаимокомпенсации и взаимного экранирования зарядов. Поэтому при более точном определении плазмы показывают, что совокупность частиц может считаться плазмой только при условии, если ее размеры значительно больше дебаивський радиус экранирования .

Следовательно, определение плазмы как "газообразной среды, где концентрации положительных и отрицательных зарядов практически одинаковы, а хаотическое движение частиц преобладает над упорядоченным движением их даже в электрическом поле . "- является несколько упрощенным.


6. Естественная и искусственная плазма

В земных условиях в состоянии плазмы находится вещество ионосферы , благодаря плазме крови северное сияние , плазма существует в молниях , в огнях святого Эльма . Пламя тоже большей частью ионизирует вещество, образуя плазму. Свободные электроны в металлах, которые движутся между положительно заряженными ионными остовами, тоже можно считать плазмой - их поведение во внешних электрических и электромагнитных полях аналогична поведению плазмы.

Плазма также создается человеком искусственно везде, где используется электрический разряд : в дуговых и флюоресцентных лампах , в дугах при электросварке , в ионных двигателях , плазменных телевизорах подобное.


6.1. Другое

  • Бомовской коэффициент диффузии
  • Поперечный сопротивление Спитцера

7. Математическое описание

Плазму можно описывать на различных уровнях детализации. Обычно плазма описывается отдельно от электромагнитных полей. Общий описание проводниковой жидкости и электромагнитных полей дается в теории магнитогидродинамических явлений или МГД теории.

7.1. Флюидная (жидкостная) модель

В жидкостной модели электроны описываются в терминах плотности, температуры и средней скорости. В основе модели лежат: уравнение баланса для плотности, уравнение сохранения импульса, уравнение баланса энергии электронов. В двухжидкостной модели таким же образом рассматриваются ионы.

7.2. Кинетический описание

Иногда жидкостная модель оказывается недостаточной для описания плазмы. Более подробное описание дает кинетическая модель, в которой плазма описывается в терминах функции распределения электронов по координатам и импульсам. В основе модели лежит уравнения Больцмана . Уравнение Больцмана применяется для описания плазмы заряженных частиц с кулоновским взаимодействием результате дальнодействующих характера кулоновских сил. Поэтому для описания плазмы с кулоновским взаимодействием используется уравнение Власова с самосогласованным электромагнитным полем, созданным заряженными частицами плазмы. Кинетический описание необходимо применять в случае отсутствия термодинамического равновесия, или в случае присутствия сильных неоднородностей плазмы.

Слово "плазма" имеет много значений, в их числе и физический термин. Итак, что такое плазма в физике?

Плазма - это ионизированный газ, который образуют нейтральные молекулы и заряженные частицы. Этот газ является ионизированным - от оболочки его атомов отделен минимум один электрон. Отличительной особенностью данной среды можно назвать ее квазинейтральность. Квазинейтральность означает, что среди всех зарядов в единице объема плазмы число положительных равно числу отрицательных.

Мы знаем, что вещество может быть газообразным, жидким или твердым - и эти состояния, именуемые агрегатными, способны перетекать одно в другое. Так вот, плазма считается четвертым агрегатным состоянием, в котором может пребывать вещество.

Итак, плазму отличают два основных свойства - ионизированность и квазинейтральность. О других ее особенностях мы поговорим далее, а вначале обратим внимание на происхождение термина.

Плазма: история определения

Проводить исследования разрядов начал Отто фон Герике с 1972 года, однако в течение двух с половиной следующих столетий ученые не могли выявить особые свойства и отличительные черты ионизированного газа.

Автором термина "плазма" как физического и химического определения считают Ирвинга Лэнгмюра. Ученый проводил опыты с частично ионизированной плазмой. В 1923 он и другой американский физик Тонкс предложили сам термин.

Физика плазмы зародилась в период между 1922-1929 годами.

Слово "плазма" по происхождению греческое, означает пластичную вылепленную фигуру.

Что такое плазма: свойства, формы, классификация

Если вещество нагревать, по достижении определенного значения температуры оно станет газообразным. Если продолжить нагревание, то газ начнет распадаться на составляющие его атомы. Потом они превращаются в ионы: это и есть плазма.

Есть разные формы этого состояния вещества. Плазма проявляется в земных условиях в разрядах молний. Также она образует ионосферу - это слой в верхнем слое атмосферы. Ионосфера появляется под действием ультрафиолета и делает возможным передачу радиосигналов на дальние расстояния.

Во Вселенной плазмы намного больше. Барионное вещество Вселенной почти полностью находится в состоянии плазмы. Плазма образует звезды, включая Солнце. Другие формы плазмы, встречающиеся в космосе - межзвездные туманности, солнечный ветер (поток ионизированных частиц, идущий от Солнца).

В природе, помимо молний и ионосферы, плазма существует в форме таких интересных явлений, как огни Святого Эльма, Северное сияние.

Есть искусственная плазма - например, в люминисцентных и плазменных лампах, в электрических дугах дуговых ламп и т.д.

Классификация плазм

Плазмы бывают:

  • идеальные, неидеальные;
  • высоко- , низкотемпературные;
  • неравновесные и равновесные.

Плазма и газ: сравнение

Плазма и газ во многом схожи, однако есть существенные отличия в их свойствах. Например, по электрической проводимости газ и плазма различны - у газа низкие значения по данному параметру, у плазмы, напротив, высокие. Газ состоит из подобных частиц, плазма - из разных по свойствам - заряду, скорости движения и т.п.