Каков кпд организмов животных и человека. Кпд различных движителей и скелетных мышц человека в разных условиях деятельности

Идея визуализировать энергетический эквивалент работы человеческого мозга сегодня используется даже в рекламных объявлениях.
Источник: фрагмент рекламного объявления из журнала Nature

Они как будто сговорились! У Есенина: «Коль гореть, так уж гореть, сгорая». А вот у Маяковского: «Светить всегда, светить везде»... И, как итог, фактически парафраз этих строк из репертуара Пугачевой: «Жить, гореть и не угасать!» Но самое интересное начинается, если все эти строчки начать расшифровывать буквально.

Поразительно, но процесс дыхания аналогичен процессу горения, только это – «холодное» горение топлива (водород), взаимодействующего с окислителем (кислород воздуха). И в этом смысле аналог дыханию – это процессы медленного окисления: образование ржавчины, гниение, брожение...

А источником водорода как раз и служит пища: в желудке, кишечнике пища разлагается под действием ферментов до жирных кислот, которые, в свою очередь, распадаются в клетке до воды, углекислого газа и атомарного водорода. Образующийся в этой реакции электрон и запускает все идущие в живом организме процессы. В итоге, по существующим оценкам, мускульная энергия, развиваемая человеком, эквивалентна электрической лампочке мощностью в 150 Вт.

«...при работе мускула происходит почти такое же сгорание его тканей (то есть соединение этих тканей с кислородом), какое происходит с топливом в котельной топке паровой машины или в цилиндрах двигателей внутреннего сгорания, – растолковывает профессор Б.Вейнберг в заметке «КПД человека». – Таким образом, для работы мускула ему необходимо доставлять и материал для восстановления его тканей, и кислород для сжигания их. И то и другое доставляется посредством крови» («Техника – молодежи», № 2, 1935).

Все это дает основание физиологам теплопродукцию живых систем приравнять, с некоторым приближением, интенсивности потребления кислорода. Зафиксированные здесь рекорды, в энергетическом эквиваленте, таковы: максимальный обмен – у альпинистов и горцев: 250–280 МВт/г; жители равнин отстают почти на «корпус» – 160–200 МВт/г. То есть при адаптации человека к различным географическим условиям происходит увеличение мощности дыхательной системы на клеточном уровне. Ничего удивительного в этом нет, если учесть, что подъем в горах на 305 м приблизительно равен прохождению 480 км на север или на юг от экватора.

Любопытно, что согласно наставлениям каждый военнослужащий армии США должен получать 4,5 тыс. калорий в день, тогда как финские военные рекомендуют 6 тыс. калорий в день.

Но вообще-то нормальному взрослому человеку в день нужно с пищей потреблять 2500–3000 ккал. (За год же человек потребляет количество энергии, эквивалентное сжиганию 100 кг угля – sic!) Если этот энергетический прожиточный минимум обеспечен, человек способен с помощью своих мускулов совершить механическую работу, эквивалентную 500–600 ккал. Коэффициент полезного действия (КПД) человека, как нетрудно убедиться, 20%. Между прочим, это больше, чем у лошади (ее КПД около 10%), и значительно больше, чем у быка. (Может быть, интересно: одна лошадиная сила – подъем на 1 м 75 кг за 1 с.)

В то же время человек со своими мышцами далеко не лучший двигатель: его мощность, измеренная в лошадиных силах, составляет всего 0,03–0,04. Очень редко «мощность» взрослого мужчины доходит до 0,2–0,25 л.с.

Однако достоинством человека как энергетической установки является его большая выносливость. Так, например, по подсчетам академика Леонида Милова, через каждые четыре дня работы на пахоте лошади был необходим день выгула. В отличие от лошади русский крестьянин в XVIII веке с 22 апреля по 6 июня работал на поле без единого выходного, практически без отдыха и почти без сна.

Или вот еще пример ветхозаветной «безотходной» технологии. Пирамиду Хеопса строили 100 тыс. человек, заменявшиеся новыми каждые три месяца на протяжении 30 лет. Поднимались громадные тяжести: гранитные балки перекрытия склепа пирамиды Хеопса весят 500 тонн каждая, а в пирамиде Хефрена есть монолиты весом до 423 тонн. И все это ворочали вручную!

Когда находишься рядом с этими рукотворными исполинскими мегалитами, первое, что приходит на ум, – какая же чертова уйма обезличенного человеческого труда овеществлена в этих склепах! Тем более это тяжело представить себе, если знать (благодаря расчетам все того же профессора Б.Вейнберга), что 1 кВт может заменить собой 150 умеренно работающих людей, 33 тяжелоработающих или 20 очень тяжело работающих людей.

Но человек – это не только хороший генератор энергии, но и вполне сносный ее аккумулятор: он может работать, не получая пищи, в течение одних-двух суток. При массе в 75 кг взрослый мужчина способен накопить более 2–3 кВт-ч энергии (примерно 30 Вт-ч на 1 кг веса). Если пересчитать эти показатели на единицу массы, то «человеческая машина» окажется в иерархии энергий выше сжатых газов и всевозможных механических пружин. Но ниже кипящей воды. Так что с физической точки зрения не вполне понятна этимология широко распространенного определения непрофессионала – «чайник». Какой же это чайник, если он не может вскипятить стакан воды!

В культовом киберпанковском фильме «Матрица» (время действия – 2199 год, Земля) человеческие существа используются захватившими власть машинами в качестве обычных батареек... Тут создатели картины немного перемудрили. Ведь известно, что для производства одного джоуля энергии, содержащегося в пище, которую потребляет человек, затрачивается 10 Дж энергии. Машины просто не смогли бы прокормить свои биологические «батарейки». Игра не стоит свеч.

Впрочем, у этого сюжета есть варианты. Например, такой. «Скорее всего машины используют резервную мыслительную силу человечества в качестве громадного распределенного процессора для контроля над реакциями ядерного синтеза», – считает британский математик Питер Б.Ллойд. Вот это уже теплее!

Человеческий мозг, возможно, самый сложный объект во Вселенной. А вот для работы этому чуду живой «механики» нужно всего 10 Вт энергии! Правда, мозг очень привередлив в выборе топлива-пищи: просто жиры ему не подходят, хотя в 1 г жира запасено 37,7 Дж энергии. Мозгу подавай глюкозу и кислород. Видите ли, глюкоза «сгорает» полностью, не оставляя после себя в мозгу никаких «шлаков». В состоянии покоя мозг потребляет около двух третей всей циркулирующей в крови глюкозы и 45% кислорода. Снижение концентрации глюкозы в крови ниже 0,5–0,2 г/л приводит к потере сознания и коме.

На этом фоне вполне правдоподобно выглядит гипотеза, согласно которой именно особенности пищевой, то бишь энергетической, стратегии Homo sapiens’ов позволили им опередить неандертальцев в эволюционной гонке. Так, некоторые антропологи (Sorensen, Leonard, 2001) сравнивают средний уровень физических нагрузок неандертальцев с нагрузками атлетов, фермеров и грузчиков. По расчетам этих авторов, необходимые ежедневные энергетические потребности неандертальцев превышали таковые у современных эскимосов – людей с наибольшими энергетическими затратами среди современного человечества, с очень высоким уровнем основного обмена. Прокормиться было очень трудно. Исторической перспективы – никакой, увы...

А хитрые sapiens’ы взяли да изобрели приготовление пищи на огне. Сразу качественно возрастает энергетическая и питательная ценность, ее усвояемость. Не случайно приготовленная на огне пища – возможно, наиболее ранний объект кражи в обществе человека.

Как будто специально под этот случай сказал еще один поэт, Андрей Вознесенский:

Стоило гроши, и вдруг алтын.

Ложная растет дороговизна.

Ценность измеряется одним –

Единицей Вложенности Жизни!

Ну и еще, энергетической ценностью пищи...

Мы́шечными тка́нями называют ткани, различные по строению и происхождению, но сходные по способности к выраженным сокращениям. Они обеспечивают перемещения в пространстве организма в целом, его частей и движение органов внутри организма и состоят из мышечных волокон.

Мышечное волокно представляет собой вытянутую клетку. В состав волокна входят его оболочка - сарколемма, жидкое содержимое - саркоплазма, ядро, митохондрии, рибосомы, сократительные элементы - миофибриллы, а также содержащий ионы Са 2+ , - саркоплазматический ретикулум. Поверхностная мембрана клетки через равные промежутки образует поперечные трубочки, по которым внутрь клетки проникает потенциал действия при ее возбуждении.

Функциональной единицей мышечного волокна является миофибрилла. Повторяющаяся структура в составе миофибриллы называется саркомером. Миофибриллы содержат 2 вида сократительных белков: тонкие нити актина и вдвое более толстые нити миозина. Сокращение мышечного волокна происходит благодаря скольжению миозиновых филаментов по актиновым. При этом перекрывание филаментов увеличивается и саркомер укорачивается.

Главная функция мышечного волокна - обеспечение мышечного сокращения.

Преобразование энергии при мышечном сокращении. Для сокращения мышцы используется энергия,освобождающаяся при гидролизе АТФ актомиозином,причем процесс гидролиза тесно сопряжен с сократительным процессом. По количеству выделяемого мышцей тепла можно оценить эффективность преобразования энергии при сокращении.. При укорочении мышцы скорость гидролиза повышается в соответствии с ростом производимой работы. освобождаемой при гидролизе энергии достаточно для обеспечения только совершаемой работы, но не полной энергопродукции мышцы.

Коэффициент полезного действия (кпд) мышечной работы (r ) представляет собой отношение величины внешней механической работы (W ) к общему количеству выделенной в виде тепла (Е ) энергии:

Наиболее высокое значение кпд изолированной мышцы наблюдается при внешней нагрузке, составляющей около 50% от максимальной величины внешней нагрузки. Производительность работы (R ) у человека определяют по величине потребления кислорода в период работы и восстановления по формуле:

где 0,49 - коэффициент пропорциональности между объемом потребленного кислорода и выполненной механической работой, т. е. при 100% эффективности для выполнения работы, равной 1 кгс м (9,81 Дж ), необходимо 0,49 мл кислорода.

Двигательное действие / КПД

Ходьба/23-33%; Бег со средней скоростью/22-30%; Езда на велосипеде/22-28%; Гребля/15-30%;

Толкание ядра/27%; Метание/24%; Поднятие штанги/8-14%; Плавание/ 3%.



4. Изотонический режим работы мышц. Статическая работа мышц.

Изотонический режим (режим постоянного тонуса мышцы) наблюдается при отсутствии нагрузки на мышцу, когда мышца закреплена с одного конца и свободно сокращается. Напряжение в ней при этом не изменяется. Так как при этих условиях величина нагрузки Р = 0, то механическая работа мышцы также равна нулю (А = 0). В таком режиме работает в организме человека только одна мышца - мышца языка.

Статическая работа не предполагает сильного напряжения, однако в некоторых случаях статическая работа мышц может быть очень напряженной, например при удержании штанги, при некоторых упражнениях на кольцах или параллельных брусьях. Такая работа требует одновременного сокращения всех или почти всех волокон мышц и может продолжаться лишь очень короткое время. При динамической работе поочередно сокращаются различные группы мышц, причем некоторые мышцы работают то динамически, производя движение в суставе, то статически, обеспечивая на некоторое время неподвижность костей того же сустава. Степень напряжения мышц может быть различной.

Статическая работа утомляет скелетную мускулатуру больше, чем динамическая.

5. Общая характеристика системы кровообращения. Скорость движения крови в сосудах. Ударный объем крови. Работа и мощность сердца.

К системе кровообращения относятся сердце и сосуды - кровеносные и лимфатические.. Сердце млекопитающих четырехкамерное. Кровь движется по двум кругам кровообращения.

функции всех элементов сердечно-сосудистой системы: 1) трофическая – снабжение тканей питательными веществами; 2) дыхательную – снабжение тканей кислородом; 3) экскреторную – удаление продуктов обмена из тканей; 4)регуляторную – перенос гормонов, выработка биологически активных веществ, регуляция кровоснабжения, участие в воспалительных реакциях.

При движении крови по сосудам различают линейную и объемную скорость кровотока.

Линейная скорость кровотока определяется суммарным сечением сосудистой системы. Она максимальна в аорте - до 50 см/сек и минимальна в капиллярах - около нуля. В венозном отделе сосудистой системы линейная скорость вновь возрастает. Линейная скорость в полых венах в два раза меньше, чем в аорте и равна примерно 25 см/мин.

Объемная скорость кровотока - это количество крови, протекающее через общее сечение сосудистой системы в единицу времени. Она одинакова во всех отделах сосудистой системы крови.

Время полного кругооборота крови - это то время, за которое кровь проходит через большой и малый круги кровообращения. При 70-80 сокращениях сердца в минуту полный кругооборот крови происходит приблизительно за 20-23 сек.

Движение крови в организме: аорта – 500-600 мм/c, артерии – 150-200 мм/c, артериолы – 5 мм/c, капилляры – 0,5 мм/c, средние вены – 60-140 мм/c, полые вены - 200 мм/c. Гипертония – повышенное АД. Гипотония – пониженное АД.

Систолический объем крови . Объем крови, нагнетаемый каждым желудочком в магистральный сосуд (аорту или легочную артерию) при одном сокращении сердца, обозначают как систолический, или ударный, объем крови.

Работа, совершаемая сердцем , затрачивается на преодоление сопротивления и сообщение крови кинетической энергии.

Рассчитаем работу, совершаемую при однократном сокращении левого желудочка.

V у – ударный объем крови в виде цилиндра. Можно считать, что сердце поставляет этот объем по аорте сечением S на расстояние I при среднем давлении р. Совершаемая при этом работа равна:

A1 = FI = pSI = pV y .

На сообщение кинетической энергии этому объему крови затрачена работа:

где р – плотность крови;υ – скорость крови в аорте. Таким образом, работа левого желудочка сердца при сокращении равна:

Эта формула справедлива как для покоя, так и для активного состояния организма, но эти состояния отличаются разной скоростью кровотока.

6. Уравнение Пуазейля. Понятие о гидравлическом сопротивлении кровеносных сосудов и о способах воздействия на него.

Уравнение Пуазёйля - закон, определяющий расход жидкости при установившемся течении вязкой несжимаемой жидкости в тонкой цилиндрической трубе круглого сечения.

Согласно закону, секундный объёмный расход жидкости пропорционален перепаду давления на единицу длины трубки (градиенту давления в трубе) и четвёртой степени радиуса (диаметра) трубы:

Где Q - объемный секундный расход жидкости; R - радиус трубопровода; p1-p2- перепад давлений на трубке; n-коэффициент трения; L- длина трубки.

Закон Пуазёйля работает только при ламинарном течении и при условии, что длина трубки превышает так называемую длину начального участка, необходимую для развития ламинарного течения в трубке.

Гидравлическое сопротивление прямо пропорционально длине сосуда и вязкости крови и обратно пропорционально радиусу сосуда в 4-й степени, то есть больше всего зависит от просвета сосуда , а также от состояния стенок сосудов и от их эластичности.

Так как наибольшим сопротивлением обладают артериолы, общее периферическое сопротивление сосудов(ОПСС) зависит главным образом от их тонуса. Различают центральные механизмы регуляции тонуса артериол (нервные и гормональные влияния)и местные (миогенная, метаболическая и эндотелиальная регуляция).

На артериолы оказывают постоянный тонический сосудосуживающий эффект симпатические нервы. Основные гормоны, в норме участвующие в регуляции тонуса артериол, - это адреналин и норадреналин.

Миогенная регуляция сводится к сокращению или расслаблению гладких мышц сосудов в ответ на изменения трансмурального давления; при этом напряжение в их стенке остается постоянным. Тем самым обеспечивается ауторегуляция местного кровотока - постоянство кровотока при меняющемся перфузионном давлении.

Метаболическая регуляция обеспечивает расширение сосудов при повышении основного обмена (за счет выброса аденозина и простагландинов) и гипоксии (также за счет выделения простагландинов).

Движитель

Вид деятельности (род работы), техническое средство

Паровая машина

Паровоз, паровой молот и т.п.

Двигатель внутреннего сгорания

Автомобиль, поршневой самолет

Дизельный двигатель

Автомобиль, моторное судно, трактор

Ядерная энергетическая установка

Судовой энергоблок; АЭС

Реактивный двигатель

Реактивный самолет, ракета

Электродвигатель

Электрические приводы машин и механизмов

Скелетные мышцы человека

Скоростной бег, подъем штанги, прыжок

Бег на средние дистанции, игра в хоккей, большой теннис

Бег на длинные дистанции, лыжные гонки, велосипед (шоссе) Марафонский бег, прогулка

Энергетическое и вегетативное обеспечение мышечной работы

Затраты энергии при мышечной деятельности могут быть учтены и измерены достаточно полно. Энергетические затраты зависят от интенсивности и объема нагрузки. Суммарные энергозатраты складываются из непременных энергетических затрат на поддержание жизнедеятельности организма; энергетических затрат на обеспечение сокращения выполняющих работу скелетных мышц; дополнительных энергетических затрат на усиленную работу сердечно-сосудистой, дыхательной и других систем при мышечной деятельности; постоянных энергетических затрат на поддержание позы; нарастающих энергетических затрат на нормализацию внутренней среды организма, изменяющейся под воздействием мышечной нагрузки.

Только в отдельных случаях удается количественно оценить каждый из этих компонентов энергозатрат. Главный смысл изменений деятельности всех физиологических систем при мышечной работе - обеспечение необходимого уровня энергетических затрат в каждом из перечисленных компонентов.

Вегетативные системы. Физиологические системы организма, обеспечивающие его нормальную жизнедеятельность в условиях покоя и мышечной деятельности, называются вегетативными. К ним относятся дыхание, кровообращение, пищеварение, выделение и т.п. При мышечной работе активность всех вегетативных систем изменяется таким образом, чтобы создать наилучшие условия снабжения работающих мышц энергией, а также свести к минимуму те отрицательные сдвиги во внутренней среде организма, которые возникают вследствие интенсивных обменных процессов в мышцах. Соответствие активности вегетативных систем потребностям организма обеспечивается за счет нервной и гуморальной регуляции.

Напряженность работы, Вт

Рис. 39. Возрастные и половые различия зависимости частоты пульса от уровня нагрузки

Реакция вегетативных систем на нагрузку. Если нагрузка на мышцы постепенно увеличивается, т.е. растет мощность внешней механической работы, то соответственно увеличиваются потребление кислорода, скорость кровотока, вентиляция легких и т.п. Большинство показателей деятельности вегетативных систем организма линейно зависит от мощности нагрузки, т. е. увеличение мощности на некоторую конкретную величину приводит к соответствующему, всегда одинаковому, увеличению таких показателей, как, например, потребление кислорода, частота пульса и др. (рис. 39). Однако это справедливо только в том случае, если такие измерения производятся при работе в устойчивом состоянии, т. е. не менее чем через 2-3 мин после начала нагрузки или ее очередного повышения. Эти 2-3 мин необходимы организму для того, чтобы отрегулировать уровень активности вегетативных функций в соответствии с энергетическим запасом скелетных мышц.

Линейная зависимость между величиной нагрузки и показателями деятельности физиологических систем организма позволяет оценивать интенсивность нагрузки по величине частоты пульса или потребления кислорода, когда строгое измерение мощности работы невозможно. И наоборот, зная величину нагрузки, можно прогнозировать уровень активности той или иной физиологической системы. На этом основана, в частности, методика измерения «физической работоспособности при пульсе 170 уд/мин» (сокращенно - ФР 170 , или PWC 170 - по первым буквам английских слов «физическая», «работа», «способность»). Эта методика такова: испытуемый выполняет поочередно два различных по нагрузке задания и оба раза у него измеряют частоту пульса в устойчивом состоянии, т.е. не ранее, чем через 3 мин после начала работы. Полученные величины отмечают на графике точками, а затем проводят через них прямую и находят точку ее пересечения с прямой, отражающей уровень частоты пульса 170 уд/мин. Опустив из точки пересечения перпендикуляр на ось абсцисс с нанесенными на ней величинами мощности нагрузки (рис. 40), получают результат, выраженный в единицах мощности. Это и будет значением PWC I 70 . Вместо графического можно использовать способ расчета PWC I 70 по формуле, основанной на уравнении прямой. Согласно рекомендациям Всемирной организации здравоохранения, тест PWC I 70 либо его аналог (PWC I 50 , PWC I 30 и т.п.) проводится во всех случаях, когда необходимо определить физические кондиции человека и охарактеризовать его физическое здоровье.

Рис. 40. Схема графического определения PWC I 70

f 0 - пульс при первой нагрузке; f n - пульс при второй нагрузке; О u N - мощность первой и второй нагрузки. Стрелки указывают величину PVC I 70 на шкале мощности

Для детей и подростков школьного возраста определение PWC170 может быть несколько упрощено за счет того, что вместо двух нагрузок допустимо задавать лишь одну, но обязательно, чтобы частота пульса при этом достигала 140 уд/мин или более. Тогда второй точкой на графике можно отмечать значение пульса покоя. У дошкольников моложе 6 лет корректное измерение величины PWC I 70 невозможно, поскольку они не могут поддерживать устойчивое состояние активности своих вегетативных функций.

Измерение PWC I 70 - простой и эффективный способ оценки функциональных возможностей организма при работе в зонах умеренной и большой мощности, в которых и осуществляется главным образом жизнедеятельность организма. Хотя измеряемой величиной в этом тесте является частота пульса, оцениваются в комплексе все составляющие кислородно-транспортной системы организма. Отклонения от нормы в любой из важнейших систем - кровообращения, дыхания, двигательного аппарата - сразу же проявятся в значительно более низких показателях PWC I 70 . Напротив, почти любой вид тренированности приводит к существенному увеличению PWC I 70 .

Нелинейные зависимости. Линейная зависимость показателей активности вегетативных систем организма от мощности имеет место только в диапазоне нагрузок, где энергетическое обеспечение непосредственно связано с доставкой кислорода к работающим мышцам, т.е. в «аэробном» диапазоне (зоны умеренной и большой мощности). Если же заданная нагрузка лежит в зоне субмаксимальной или максимальной мощности, то линейной зависимости между показателями работы физиологических функций и уровнем нагрузки не наблюдается (рис. 41). В большинстве случаев показатели деятельности вегетативных систем растут по мере повышения мощности нагрузки до определенного предела, после которого их увеличение прекращается, а если мощность продолжает возрастать, то возможно даже снижение этих показателей. Такой уровень активности вегетативной функции, который может быть достигнут при самой интенсивной работе в аэробных условиях, называется максимальным. Если функция достигла своего максимального уровня, то дальнейшее увеличение мощности нагрузки может привести только к снижению показателя.

Рис. 41. Примеры нелинейных зависимостей параметров энергетического обмена от мощности мышечной работы

L a - концентрация лактата в крови; Q o 2 - скорость потребления кислорода

Некоторые показатели активности вегетативных функций в естественных условиях мышечной деятельности не могут достичь своего максимального уровня. Так, максимальная вентиляция легких возможна только при произвольном наиболее частом и глубоком дыхании. Другие функции, такие как частота пульса, объемная скорость кровотока и потребление кислорода, могут достичь максимума только в условиях мышечной деятельности. Максимальные уровни частоты пульса и потребления кислорода обычно достигаются при одинаковой нагрузке. Мощность такой нагрузки, при которой частота пульса и потребление кислорода достигают максимального уровня, называют критической. Нагрузки критической мощности очень трудоемки и не могут продолжаться долго (обычно не более 3-5 мин).

Аэробная производительность и аэробный диапазон. Величина максимального потребления кислорода (МПК) - один из главных показателей в физиологии мышечной деятельности. Физиологический смысл величины МПК состоит в том, что она отражает суммарную пропускную способность всех механизмов транспорта кислорода, начиная от транспорта газов в легких и кончая транспортом электронов в митохондриях скелетно-мышечных волокон. При этом, поскольку скорость поглощения кислорода пропорциональна мощности работы, которая может за счет этого выполняться, величину МПК называют еще «аэробной производительностью» организма.

Диапазон нагрузок от состояния покоя до критической мощности, при которой достигается МПК, называют «аэробным диапазоном». Хотя большая часть потребности организма в энергии при нагрузках в аэробном диапазоне действительно покрывается за счет использования кислорода, бескислородные (анаэробные) источники также обязательно участвуют в энергообеспечении мышечной работы, по крайней мере в период врабатывания.

Поддержание гомеостаза при мышечной нагрузке. Изменения внутренней среды, происходящие во время мышечной работы, требуют напряжения механизмов гомеостаза. Поскольку при нагрузке обменные процессы ускоряются во много раз, во столько же раз больше образуется разнообразных продуктов, подлежащих удалению из организма, а также метаболической воды. Одновременно резко увеличивается температура тела, поскольку вся энергия, освободившаяся в клетках и не превращенная в механическую работу, преобразуется в тепло, и это тепло нагревает организм. Учитывая, что в режиме МПК человек вырабатывает около 1200- 1500 Вт энергии, и лишь 1/5 ее часть реализуется в виде механической работы, можно себе представить, как быстро нагрелся бы организм, если бы не работали системы терморегуляции.

Физиологическая «стоимость» физической работы. Физическая работа, которую выполняет человек, отнюдь не идентична той механической работе, которая оценивается с помощью эргометрических методов. Ни интенсивность, ни объем внешней механической работы, которую может выполнить человек, сами по себе ничего не говорят о той физиологической «цене», которую платит организм при физической нагрузке. Под «физиологической ценой» нагрузки мы понимаем ту добавочную работу, которую вынуждены выполнять системы организма (в том числе в восстановительном периоде) для компенсации затрат на поддержание гомеостаза. Для ее оценки можно использовать некоторые показатели сердечной деятельности и потребления кислорода, зарегистрированные во время работы и в восстановительном периоде.

Возрастные этапы становления энергетики мышечной деятельности. Первый год жизни ребенка представляет собой период бурного становления мышечной функции и, разумеется, ее энергетического и вегетативного обеспечения. Этот этап продолжается до возраста 3 лет, после чего преобразования в мышцах тормозятся, и следующий этап начинается вместе с полуростовым скачком примерно в 5 лет. Важнейшим событием здесь является появление уже близких ко взрослому варианту типов мышечных волокон, хотя их соотношение еще является «детским», да и функциональные возможности вегетативных систем еще недостаточно велики. В школьном возрасте ребенок проходит еще целый ряд этапов, только на последнем из них достигая «взрослого» уровня регуляции, функциональных возможностей и энергетики скелетных мышц:

1-й этап - возраст от 7 до 9 лет - период поступательного развития всех механизмов энергетического обеспечения с преимуществом аэробных систем;

2-й этап - возраст 9-10 лет - период «расцвета» аэробных возможностей, роль анаэробных механизмов мала;

3-й этап - период от 10 до 12-13 лет - отсутствие увеличения аэробных возможностей, умеренное увеличение анаэробных возможностей, развитие фосфагенного и анаэробно-гликолитического механизмов протекает синхронно;

4-й этап - возраст от 13 до 14 лет - существенное увеличение аэробных возможностей, торможение развития анаэробно-гликолитического механизма энергообеспечения; фосфагенный механизм развивается пропорционально увеличению массы тела;

5-й этап - возраст 14-15 лет - прекращение увеличения аэробных возможностей, резкое увеличение емкости анаэробно-гликолитического процесса, развитие фосфагенного механизма, по-прежнему, пропорционально увеличению массы тела;

6-й этап - период от 15 до 17 лет - аэробные возможности растут пропорционально массе тела, продолжают быстро расти анаэробно-гликолитические возможности, значительно ускоряется развитие механизмов фосфагенной энергопродукции, завершается формирование дефинитивной структуры энергообеспечения мышечной деятельности.

На процессы созревания энергетических и вегетативных систем огромное влияние оказывает половое созревание, так как половые гормоны непосредственно влияют на метаболические возможности скелетных мышц. Аэробное энергообеспечение, достигающее расцвета еще до начала пубертата, на первых его стадиях даже несколько ухудшается, однако к возрасту 14 лет отмечается новый рост возможностей аэробных систем энергообеспечения. Это связано, в частности, с внутренними потребностями мышц, которым для последнего этапа дифференцировок требуются мощные окислительные системы. Анаэробное энергообеспечение резко активируется уже на начальных стадиях полового созревания, затем (III стадия) темп его совершенствования замедляется, а после достижения IV стадии полового созревания (15-16 лет у мальчиков, 13-14 лет у девочек) наблюдается бурный рост анаэробных возможностей, особенно у юношей. Девушки в этот период уже сильно отличаются от юношей по характеру и уровню развития мышечной энергетики.

Источником энергии мышечного сокращения служит энергия гидролитического расщепления АТФ с помощью фермента миозин-АТФ-фазы до АДФ и неорганического фосфата (3 молекулы АТФ на 1 «гребок»). Расщепление 1 моля АТФ обеспечивает около 48 кДж. 50-60% этой энергии превращается в тепло и лишь 40-50% идет на работу мышц, причем лишь 20-30 % превращается в механическую энергию, остальное идет на работу ионных насосов и окислительного восстановления АТФ.

Системы восстановления атф

Восстановление АТФ осуществляется сразу же после ее расщепления до АДФ. Этот процесс осуществляется при участии 3 энергетических систем.

1) фосфогенная система , где используется энергия креатинфосфата (система АТФ-КрФ). Эта система обладает наибольшей скоростью действия, мощностью, но незначительной емкостью, поэтому используется в самом начале работы или при работе максимальной мощности (но не более 5 с). Это анаэробный процесс, т.е. он протекает без участия кислорода.

2)система окислительного фосфорилирования разворачивается по мере удлинения времени работы (через 2-3 мин). Если интенсивность работы мышц не максимальна, то их потребности в кислороде удовлетворяются полностью. Поэтому работа может выполняться на протяжении многих часов. Необходимая для ресинтеза АТФ энергия поступает в результате окисления жиров и углеводов, причем чем больше интенсивность, тем меньше вклад жиров. Это аэробный процесс.

3) гликолитическая система , где восстановление АТФ идет за счет энергии анаэробного расщепления углеводов (гликогена, глюкозы) до молочной кислоты. Во время этой реакции скорость образования АТФ в 2-3 раза выше, а механическая работа в 2-3 раза больше, чем при длительной аэробной работе. Однако, емкость гликолитической системы в тысячи раз меньше, чем окислительной (хотя в 2,5 раза больше фосфогенной. Поэтому такая система может обеспечивать работу на время от 20 с до 1-2 мин. и заканчивается она значительным накоплением молочной кислоты.

Коэффициент полезного действия

Необходимо заметить, что и хемомеханическая реакция в системе актомиозиновых мостиков, и все последующие процессы идут с потерей энергии в форме теплоты.Коэффициент полезного действия (КПД) мышцы как механи­ческой машины (здесь надо оговориться, что мышца не только механическая машина, но и основной обогреватель организма, поэтому ее тепловой выход не бесполезен) может быть вычислен по формуле:

где А – совершаемая работа, а Q- тепловой выход мышцы.

Тепловой выход мышцы

Тепловой выход мышцы ( Q ) сложен. Во-первых, существует выход теплоты при изометрическом напряжении мышцы, при задержке ее сокращения стопо­ром. Этот выход называюттеплотой активации . Если на фоне этого состояния мышца с грузом освобождается от стопора и, сокращаясь, поднимает груз, то она выделяет дополнительную теплоту -теплоту укорочения , пропорциональную механической работе(эффект Фенна ). По-видимому, пере­мещение нитей с подключением в работу все новых (заряженных энергией) мостиков способствует высвобождению дополнительной энергии (и механиче­ской, и тепловой).

В условиях свободного подъема груза теплота активации (соответстствующая фазе напряжения сухожилия) и теплота укорочения сливаются, образуя так называемое начальное теплообразование . После сокращения (одиночного или краткого тетануса) в мышце возникаетзадержанное теплообразование , которое связано с процессами, обеспечивающими ресинтез АТФ, оно длится секунды и минуты. Если рассчитывать КПД мышцы по начальному теплообра­зованию, то он составит примерно 50-60% (для оптимальных условий стиму­ляции и нагрузки). Если же вести расчет КПД исходя из видов теплопродук­ции, связанных с данной механической работой, то КПД составит примерно 20-30% (КПД мышц млекопитающих падает при адаптации к холоду, что способствует усилению теплопродукции в организме).

Пешком вокруг экватора

Подсчитано, что в течение дня человек делает до 30 тысяч шагов, то есть около 20 километров. За каждые 5,5 лет он незаметно совершает путь, равный окружности экватора.

Сколько весит скелет человека?

Масса скелета человека составляет около 11 килограммов.

Когда человек выше: утром или вечером?

За счёт уплощения межпозвоночных хрящей рост человека к вечеру уменьшается примерно на 1,5 см. рост человека к 80 годам уменьшается на 5–7 см по сравнению с сорокалетним возрастом.

Сколько в черепе костей?

Человеческий череп состоит из 23 костей. Только две кости черепа - нижнечелюстная и подъязычная - подвижны, остальные прочно соединены швами.

Прочнее кирпича и гранита

Костный материал в 30 раз крепче кирпича и в 2,5 раза крепче гранита. Большая бедренная кость выдерживает вертикальную нагрузку в полторы тонны.

Она выдерживает нагрузку в 350 килограммов

Самая крепкая связка человеческого тела - бертиниева связка, укрепляющая тазобедренный сустав, - выдерживает нагрузку в 350 килограммов.

Сколько в человеке мышц?

Количество мышц у человека не является одинаковым для всех людей. В пределах нормы оно составляет от 400 до 680 мышц. Если бы все эти мышцы напряглись, они бы вызвали давление, равное приблизительно 25 тонн. У кузнечика - около 900 мышц, а у некоторых видов гусениц - даже около 4 000. Суммарный вес всех мышц составляет у мужчин 40% от общего веса тела, у женщин - 30%.

Какой орган много теряет тепла?

Коэффициент полезного действия мышц человека равен 20%. Остальные 80% расходуются на тепловые потери.

Где расположены самые сильные мышцы?

Самые сильные те, что расположены по обе стороны рта и отвечают за сжатие челюстей. Они способны развивать усилие около 70 килограммов.

Кто больше теряет энергии: плачущий или смеющий человек?

Согласно исследованиям французских невропатологов, у плачущего человека задействованы 43 мышцы лица, в то время как у смеющегося - всего 17. Таким образом, смеяться энергетически выгодней, чем плакать.

Время, когда проявляется наивысшая мышечная активность?

Отмечено, что наиболее эффективно мышцы работают в 13 час. 30 минут.

Кислородопотребляющий орган. Кто он?

До 60% кислорода поступающего в организм потребляют мышцы.

Ритм - твой помощник

Ритм - важный элемент работы, и каждому стоит в этом отношении поучиться у своего сердца: если работать ритмично, то работа будет продуктивной и хватит сил работать долго.

Когда сломаются «биологические часы»

Частые нарушения физиологического цикла «день–ночь» способны привести к болезненному расстройству внутренних «биологических часов» человека.

Дыхание

Сколько можно вдохнуть воздуха?

Вентиляция лёгких (число вдохов, умноженное на объём вдыхаемого воздуха) у здорового человека достигает 5–9 литров в минуту. В состоянии покоя человек совершает в среднем 16 дыхательных движений в минуту. В сутки это составляет около 23 000. При этом через лёгкие проходит около 7 000 литров воздуха. Минутный объём дыхания человека (количество воздуха, пропускаемого через лёгкие за одну минуту) составляет в состоянии покоя 5–8 литров в минуту, а во время физической работы может достигать более 100 литров в минуту.

Дышите спокойно

Человек в состоянии покоя расходует в сутки 400–500 литров кислорода, делая 12–20 вдохов и выдохов в минуту. Частота дыхания лошади - 12 вдохов и выдохов в минуту, крысы - 60, канарейки - 108.

Кто нас бодрит?

Отрицательно заряженные ионы газов воздуха - друзья здоровья; они делают человека бодрым, работоспособным.

Биопылесос

Мерцательный эпителий дыхательных путей человека выносит из них наружу до 20–30 г пыли в сутки.

Кровообращение

Плазма крови… и древние моря

Состав плазмы крови напоминает состав воды древних земных морей, в которых зародилась жизнь.

В два раза больше длины экватора

Общая длина кровеносных капилляров в организме человека примерно 100 000 километров. Это в 2,5 раза превышает длину земного экватора, а общая внутренняя площадь - 2 400 м 2 .

Насос, работающий всю жизнь

За 60 лет обычной, не очень напряжённой жизни, человеческое сердце совершает более 2 000 000 000 сокращений. Такую же работу проделал бы тягач, если бы поднял от уровня моря до высоты 5 500 метров валун массой 65 тонн.

Когда больше холестерина?

100 мл крови здорового человека содержат осенью и зимой 20–250 мг холестерина, а летом и весной - только 170–180 мг.

Сердечная «сорочка»

Сердце имеет сорочку - слой соединительной ткани; между сердцем и «сорочкой» имеется небольшое количество жидкости. Околосердечная сумка («сердечная сорочка») защищает работающую сердечную мышцу.

Сплющенные красные шарики

Кровяные тельца красного цвета, или эритроциты, чья суммарная поверхность составляет 3 400 м 2 . Каждый день их отмирает в организме около 2 000 000 000, что составляет 0,01% от их общего числа. Суммарная площадь поверхности всех эритроцитов составляет 3 400 м 2 . В каждом мм3 крови - 5 000 000 эритроцитов, а во всех пяти литрах, содержащихся в организме взрослого человека, - 25 000 000 000 000. Если выложить все эти эритроциты в ряд, образовавшаяся цепочка вытянется на 200 000 километров, пять раз опоясав земной шар по экватору.

«Спринты» внутри нас

Практически все клетки человеческого организма имеют ядра, которые управляют всеми физиологическими процессами в самой клетке и участвуют в процессе деления клеток. Единственное исключение составляют эритроциты. Рождаются они с ядром, но уже на ранних стадиях развития, теряют его, тем самым утрачивая способность к размножению. Новые эритроциты образуются в красном костном мозге из стволовых клеток. Ежесекундно образуется около 2 500 000 эритроцитов и примерно столько же погибает. За один день эритроцит проходит в кровеносных сосудах около 15 километров, снабжая ткани кислородом и забирая от них углекислый газ. За время существования один эритроцит в среднем проходит расстояние в 1 800 километров.

Они живут, чтобы умереть

Клетки крови постоянно отмирают и заменяются новыми. Жизнь эритроцитов (красных кровяных телец) продолжается 90–125 дней, лейкоцитов (белых кровяных телец) - от нескольких часов до нескольких месяцев, в зависимости от вида лейкоцитов. В крови взрослого человека каждый час отмирает около миллиарда эритроцитов и пять миллиардов лейкоцитов. Их заменят новые кровяные тельца. В течение суток полной регенерации подвергается 25 граммов крови.

Тоньше волоса

Кровеносные капилляры имеют толщину в 10 раз меньше, чем волос.

Вот так скорость!

В течение одной минуты сердце выбрасывает в аорту около 4 литров крови. Скорость движения в аорте 0,5 м/сек, а по капиллярам, кровь течёт, со скоростью 0,5 мм/сек. Полный оборот крови через оба круга кровообращения совершается, за 21–22 сек.

Особое вещество крови

В каждом эритроците содержится 265 000 000 молекул гемоглобина. Сборка его молекулы занимает всего 90 секунд. Ежесекундно в организме человека синтезируется 6,5∙1014 молекул гемоглобина. В 100 мл человеческой крови содержится 13–16 г гемоглобина. Один грамм гемоглобина может связывать до 1,34 мл кислорода. В состоянии покоя через сердце человека протекает около 4 л/мин, что обеспечивает получение тканям около 400 мл кислорода.

Ах, эти «тоненькие трубочки»!

Толщина стенок артерий составляет 0,8–0,9 мм. Диаметр различных артерий человека - 0,4–2,5 см. Средний диаметр капилляров у человека - около 7 мкм, что чуть меньше диаметра эритроцита. В артериях объём крови составляет в среднем 950 мл.

«Сахарная царица»

Так называли печень древние тибетские врачи. Она хранит питательные запасы и, если человек голоден, она превращает их в сахар, тем самым, подкармливая его. В состоянии покоя у человека до 50% крови может находиться в «депо крови» - печени и селезёнке, откуда в случае необходимости выбрасывается в кровяное русло. Кровоток в почках составляет 420 мл/мин, в сердце - 84, в печени - 5,7, в мозгу - 53, в поперечнополосатой мускулатуре - всего 2,7 мл/мин. Печень потребляет в 10 раз больше кислорода, чем равная ей по массе мышца, и выделяет больше тепла. Она мощный защитный барьер на пути кровотока от органов пищеварения к другим органам. Наиболее эффективно печень разлагает алкоголь между 6 и 8 часами вечера. Через печень в течение одной минуты протекает 1,5 литра крови, а в сутки - до 2 000 литров.

У женщин бьётся чаще

Сердце взрослого человека перекачивает за сутки около 10 000 литров крови. Нормальный пульс мужчины в состоянии покоя составляет 60–80 ударов в минуту. Сердце женщины бьётся на 6–8 ударов чаще. Тяжёлая физическая нагрузка увеличивает пульс до 200 ударов в минуту. Частота пульса у слона - 20, у быка и лягушки - 25, у кролика - 200, у мыши - 500.

Пищеварение

Даже сабля тупится

Остриё сабли при ударе о зубную эмаль тупится. По твёрдости эмаль можно сравнить с кварцем.

Сколько, два или четыре?

Молочные зубы заменяются постоянными. Последний коренной зуб прорезается обычно к 18–20 годам, а иногда и позднее, когда человек «благодаря учению приобретает мудрость» - так думал Гиппократ. Этот зуб он и назвал зубом «мудрости». Половина человечества имеет только два, а не четыре зуба мудрости.

Обнажённая часть нашего скелета

Удельный вес зубной эмали зуба - 2,9–3,05 г/см 2 . Дентин зуба имеет удельный вес всего лишь 2,2 г/см 2 . В дентине зуба взрослого человека содержится около 65% минеральных солей, 28% органических веществ и 8% воды. В состав зубного цемента входит около 30% органических веществ, более 55% фосфата кальция, около 8% карбоната кальция, а также фториды кальция и магния.

Терпеть нельзя!

Самое болезненное место человеческого организма - зубы. На квадратный сантиметр кожи обычно приходится не более 200 болевых рецепторов, а на такой же площади дентина зуба - от 15 000 до 30 000 рецепторов. На границе эмали и дентина их ещё больше - до 75 000 рецепторов.

«Желудь» или «желудок»?

Слово «желудок» является производным от слова «жёлудь» (в старину «маленькие жёлуди называли желудками»). На 1 см 2 слизистой желудка приходится сто желудочных желёз. Они расположены вплотную. В отличие от других пищеварительных соков, желчь почти не содержит ферментов.

«Зубатые» ферменты

В течение суток у человека выделяется около 1 литра слюны, 3 литра желудочного сока, 2 литра поджелудочного сока, 3,5 кишечного сока, 2один литр желчи. За сутки у человека выделяется в среднем один литр слюны.

Что означает для желудка час дня?

Больше всего желудочного сока образуется в 13 часов, даже если человек ничего не ел.

И это всё в нас?

Длина кишечника у человека превышает длину тела в 3–4 раза. Общая площадь поверхности ворсинок тощей кишки составляет 37 м 2 , двенадцатиперстной - 1,3 м 2 , подвздошной - 5,3 м 2 .

В нас ещё и газы?

В процессе брожения пищевой кашицы в правом (восходящем) отделе толстого кишечника образуется водород и углекислый газ, а в процессе гниения в левом (нисходящем) отделе - метан и сероводород. Всё это смешивается с воздухом, попадающим в кишечник в процессе еды вместе с пищей. При переваривании обеда образуется около 15 литров газов.

Вот так ворсинки!

На одном см 2 внутренней поверхности кишки 3 000–4 000 ворсинок. Каждая покрыта 3 000 клеток, которые, в свою очередь, имеют по 100 всасывающих трубочек. Поверхность всасывания в тонких кишках около 5 м 2 , т.е. в три раза больше поверхности тела.

Короткая «жизнь»

Ежедневно погибает около 70 000 000 000 клеток кишечного эпителия, каждая из которых живёт всего 1–2 дня.

Она нужна, чтобы дышать, двигаться, думать

В состоянии покоя и на голодный желудок человеческое тело вырабатывает за сутки столько энергии, что её хватило бы для нагревания 20 литров воды от 10ºС до кипения. Тепла, выделяющегося при работе дровосека в течение восьми часов, достаточно, чтобы нагреть до кипения 100 литров воды.

Кого боятся кишечные бактерии?

В бруснике и клюкве много бензойной кислоты. Она убивает гнилостные бактерии в кишечнике.

Из чего мы «сделаны»?

Все из клеток

Организм человека состоит из 100 000 миллиардов клеток. Для сравнения: организм слона состоит из 6 500 000 миллиардов клеток.

Вода, вода…

Вода составляет 80% массы тела ребёнка и 70% массы тела взрослого человека. В клетках головного мозга человека содержится 80%, в мышцах - 76%, в костях - около 25% воды. Глоток воды - это для мужчин 20 миллилитров жидкости, а для женщины - 14. Самая богатая водой ткань человеческого организма - стекловидное тело глаза, в котором её 99%, а самая бедная - зубная эмаль. В её составе всего 0,2% .

Так ли важна вода?

Потеря влаги в размере 6–8% от веса тела вызывает у человека полуобморочное состояние, 10% - галлюцинации и нарушение глотательного рефлекса. Потеря 12% жидкости влечёт за собой остановку сердца.

А газы, тоже есть?

Более 96% массы человеческого тела составляют четыре химических элемента. На долю кислорода приходится около 60% массы, на долю углерода - около 20%. За ними следуют водород - 10% и азот - 4%.

Не только туда, но и оттуда!

Человек в сутки может выделять 0,5–12 литров пота, который содержит 9899% воды, 0,1% мочевины, мочевую, молочную, пировиноградную, лимонную кислоты, аммиак, креатинин, серин, жиры, летучие жирные кислоты, холестерин, ароматические оксикислоты, ацетон, минеральные соли.

Кожные образования

Не снимаемая «одежда»

Кожа - самый тяжёлый орган человеческого тела. Она весит в среднем 2,7 кг. Кожа не пропускает воду, микробы, грязь. Защищает нас от ударов, уколов, укусов. Через кожу в организм поступает около 2% потребляемого человеком кислорода. Человек среднего роста теряет каждый час около 800 000 микрочастиц кожи, а за год в среднем 675 граммов. К семидесяти годам общие потери кожи составляют чуть больше 47 кг, то есть 70% среднего веса человека. Человеческий организм выделяет через кожу около 0,5 литров воды в сутки. Твёрдых веществ выделяется около 10 граммов.

Кто скажет, нам холодно или жарко?

Вся кожная поверхность тела человека содержит около 250 000 «холодовых» рецепторов и только 30 000 «тепловых». Температура кожи различна на разных участках тела. Так, в подмышечной впадине она составляет 36,6ºС, то на животе - 34ºС, а на лице - 25ºС. Кровь и внутренние органы имеют температуру 37,2–38,5ºС.

Лучше быть чистым или грязным?

На одном см 2 грязной кожи насчитывают около 40 000 микробов.

Передающие «SOS!»

В нашей коже скрыто 250 000 нервных окончаний, реагирующих на холод, 30 000 - реагирующих на тепло, около 1 000 000 - реагирующих на боль.

Кожа и время

Кожа наименее чувствительна к уколам в 9 часов утра и наиболее проницаема для косметических средств между 6 и 8 часами вечера.

Космические «антенны»

Человеческий волос в 500 раз толще стенок мыльного пузыря, в 5 раз толще капилляра, в 12 раз толще стенок альвеол и в 20 раз - паутины. Волосы растут у новорождённых со скоростью 0,2 мм в сутки, позднее - до 0,3–0,5 мм в сутки. Волосы бровей, ресниц и подмышечные волосы живут 3–4 месяца, волосы головы - 4–6 лет. За месяц волос подрастает на один сантиметр. Ежедневно на голове отмирает около 100 волос. Отмершие волосы могут сразу и не выпадать, поэтому на голове подчас скапливается до 20% мёртвых волос.

Коса - не только девичья краса

Самая длинная коса у одной японки - 3 метра, она её выращивала 20 лет. Самые длинные волосы носил Свами Пандарасаннади, глава индийского монастыря Тирудадутурай. В 1949 году длина его волос была 7 метров 92 сантиметра.

И борода и усы

Самая длинная борода принадлежала Гансу Лангсету - 5 метров 33 сантиметра, а самые длинные усы были у шведа Биргера Пелласа - 2 метра 90 сантиметров.

Достояние приматов

Кончики всех двадцати пальцев на наших конечностях несут плотные плоские роговые образования - ногти. Ногти - достояние приматов. Растёт ноготь за счёт эпителия ногтевого ложа. Ногти защищают особенно чувствительные концы пальцев. Ноготь на руке растёт со скоростью сотой доли миллиметра в сутки, а на ноге - пяти сотых. За год на пальце рук ноготь удлиняется в сумме на три сантиметра. Самый длинный ноготь на руке (на большом пальце левой руки) достигает в длину 101,6 сантиметра. Он принадлежал индийцу Шридхару Чиллару. Общая длина ногтей на пальце его левой руки при измерении в марте 1990 года составляла 4 метра 40 сантиметров. Он не обрезал ногти с 1952 года.

Выделение

Зачем мы плачем?

Дети плачут, чтобы привлечь внимание, чтобы выразить свои эмоции: страх, гнев или радость. А ещё чтобы со слезами из организма ушли вредные вещества, которые вырабатываются от боли и страданий. Кроме этого, когда мы моргаем, слёзы омывают глазное яблоко, очищая его от пыли и микробов. Здоровый человеческий организм вырабатывает примерно 0,5 литров слёзной жидкости в год. Даже самый суровый мужчина проливает ежедневно от 1–3 миллилитров слёз.

Фильтры крови

Общая длина почечных канальцев составляет 120 километров. В обеих почках у человека около 2 000 000 нефронов. За день почки пропускают через себя 2 000 литров крови, а это целая цистерна. Взрослый человек в сутки выделяет 1 200–1 600 мл мочи и должно выходить с мочой 15–45 мг щавелевой кислоты.

Что такое уролиты?

Химический состав уролитов - почечных камней - может быть разным. 40% уролитов - это оксалаты (соли щавелевой кислоты), 27% - фосфаты (соли ортофосфорной кислоты), 12–15% — ураты (соли мочевой кислоты), 2% цистиновые, ксантиновые и белковые камни и 20–30% - камни смешанного типа.

Зрение

Сложный оптический прибор

До 14 месяцев у новорождённых девочек и до 16 месяцев у мальчиков наблюдается период полного невосприятия цветов. Затем появляется восприятие красного, потом зелёного, а ещё позже синего цвета. Формирование цветоощущения заканчивается в 7,5 годам у девочек и к 8 годам у мальчиков. Глаз способен различить 130–250 чистых цветов и 5–10 000 000 000 смешанных оттенков.

После часа в темноте

После одного часа пребывания в темноте светочувствительность глаза повышается в 200 раз.

Палочки и колбочки

Сетчатка глаза человека содержит 125 000 000 палочек и 6 500 000 колбочек, при этом, вместе взятые, они настолько чувствительны, что человек теоретически мог бы увидеть огонёк свечи на расстоянии 200 километров.

Слух, обоняние, осязание

«Алло, вас не слышу!»

Среднее ухо человека содержит 2 500 клеток, реагирующих на звуки. Верхний предел воспринимаемых нами частот достигает 16–20 млн герц. С течением лет чувствительность уха, особенно к высоким звукам, уменьшается.

Вкусно, когда +24ºС

На поверхности языка находится около 9 000 нервных окончаний, реагирующих на вкус. Они лучше всего функционируют при температуре 24ºС.

Мал, да удал

Поверхность зоны обоняния носа всего 5 см 2 , но на ней размещается около 1 000 000 нервных окончаний. Ощущение запаха возникает при возбуждении не менее 40 нервных окончаний.

Вот почему он мёрзнет!

Самая холодная часть человеческого тела - нос. Температура его кончика обычно не превышает +22ºС.

Нервная система

Гигантское количество и… один процент

Нервная система человека состоит из 10 000 000 000 нейронов и 70 000 000 000 вспомогательных клеток. Из этого гигантского количества лишь один процент выполняет самостоятельную работу, то есть принимает сигналы и управляет работой мышц; остальные 99% - это посреднические клетки.

Центр всех центров или главный орган ума

В три года мозг человека развит уже на 80%. Наивысшего развития он достигает примерно к 20 годам. В дальнейшем происходит уменьшение его массы. Кора больших полушарий составляет примерно 44% объёма головного мозга. Поверхность коры в целом равна 1 468–1 670 см 2 .

Мы на третьем месте

Человек стоит на третьем месте по массе мозга (1 400 г) в живой природе после слона (5 кг) и кита (2,5 кг).

Вот такие площади!

Общая площадь коры больших полушарий у человека составляет в среднем 83 591 мм 2 , шимпанзе - 24 353 мм 2 , собаки - 6 523 мм 2 , кролика - 843 мм 2 , крысы - 254 мм 2 .

Природа не справедлива

Начиная с тридцатилетнего возраста у человека, ежедневно отмирает 30 000 до 50 000 нервных клеток головного мозга.

Вода и нервная клетка

Нервная клетка - нейрон - содержит 65–68% воды и 32–35% твёрдых веществ, среди которых на долю белков приходится 68–70%. 20–25% составляют липиды, 2–5% - нуклеиновые кислоты, 1–2% - углеводы.

С ним сосуды в тонусе

В организме человека может образовываться оксид азота (II). Он обеспечивает связь между нейронами и поддерживает тонус сосудов.

Чем больше, тем лучше

Чем больше диаметр волокна нерва, тем с большей скоростью по нему распространяется возбуждение. У теплокровных животных скорость возбуждения - 0,5–120 м/сек.

«Нервные» помощники

Ни одно действие человека не может осуществиться без участия нервной системы. Чтобы перевести тело из горизонтального положения в вертикальное, головной мозг человека отправляет через нервы к мышцам сотни нервных импульсов - сигналов.

Всё для зрения

В составе черепномозговых нервов в мозг входит 2 600 000 нервных волокон, а выходит 140 000. около половины выходящих волокон несут приказы к мышцам глазного яблока, управляя быстрыми и сложными движениями глаз. Остальные нервы управляют мимикой, жеванием, глотанием и деятельностью внутренних органов. Из входящих нервных волокон 2 000 000 - зрительные.

Мужчины и женщины

«Сильный пол»

  • Мужской мозг весит на 200 г больше, чем женский.
  • Юноша в возрасте 15–24 лет неудачно падают в 6 раз чаще, чем девушки того же возраста.
  • Среди выдающихся математиков мужчин в 12 раз больше, чем женщин.
  • Отклонения от нормы цветового зрения встречаются гораздо чаще у мужчин (8%), чем у женщин (0,5%).
  • У мужчин объём лёгких на 20% больше, чем у женщин.
  • Храпят во сне 48% мужчин и только 22% женщин.
  • Мальчики чаще, чем девочки, бывают левшами и вообще свободно владеют левой рукой, что объясняется ведущей ролью правого полушария мужского мозга.
  • 80% всех заикающихся людей - мужчины.
  • Объём крови составляет в среднем у мужчин 5,2 л, а у женщин - 3,9 литра.
  • Масса сердца мужчины в среднем 330 г женщины - 250 г.

«Слабый пол»

  • Девочки начинают разговаривать раньше, чем мальчики.
  • Обоняние у женщины на 20% лучше, чем у мужчины.
  • Психические депрессии у женщин встречаются в два раза чаще, чем у мужчин.
  • Музыкальный слух у женщин лучше, чем у мужчин: на 6 не фальшивящих женщин приходится 1 мужчина.
  • Три четверти всех мигреней приходится на долю женщин.
  • Женщины в два раза чувствительнее к алкоголю, чем мужчины.
  • Женщины предпочитают сладкие блюда, а мужчины - солёные.
  • У женщин острее видит правый глаз и лучше слышит правое ухо, а у мужчины - наоборот.
  • Жировая ткань составляет 11% веса мужчины и 23% веса женщины.
  • Женщины, чаще мужчины, страдают кариесом зубов.
  • На бессонницу жалуются 42% мужчин и 62% женщин.